Banner

  FREUNDE DES RIESKRATERMUSEUMS e. V. 

 
HOME

 

 

 

 

 

 

 

KONTAKT

 

 

 

 

 

 

ÜBER UNS

 

 

 

 

LITERATUR

 

 

 

 

 

 

 

 

MUSEUM

HOME

 

 

 

 

BILDER

 

 

 

 

 

 

 

NEWSLETTER

 

 

 

 

 

LINKS

Impressum  |  Satzung  |  Beitritt

Bayreuther Hochdruckforscher lös

 

 

Bayreuther Hochdruckforscher lösen Meteoriten-Rätsel ..

Den Wissenschaftlern am Bayerischen Geoinstitut (BGI) der Universität Bayreuth ist es jetzt gelungen, diesen seltsamen Meteoriten-Aufbau zu erklären. An der Röntgenlichtquelle PETRA III des DESY in Hamburg sowie an der Europäischen Synchrotronquelle ESRF in Grenoble haben sie Cristobalit-Proben einer intensiven Bestrahlung und hohen Drücken von bis zu 83 Gigapascal ausgesetzt – dies entspricht ungefähr dem 820.000-fachen Druck der Erdatmosphäre. Die Beugungsmuster des Röntgenlichts zeigten, wie sich das Mineral bei unterschiedlichen Drücken veränderte. Als entscheidend erwies sich der Unterschied zwischen einem hydrostatischen Druck, der das Mineral aus allen Richtungen mit gleicher Stärke zusammenpresst, und einem nicht-hydrostatischen Druck, der ungleichmäßig auf das Mineral einwirkt und darin starke Spannungen erzeugt. Die Ergebnisse haben die Forscher überrascht:

  • Ein hoher nicht-hydrostatischer Druck verwandelt Cristobalit dauerhaft in Seifertit – und zwar auch dann, wenn er schwächer ist als der äußerst hohe Druck, der nötig wäre, um Seifertit direkt aus Siliziumdioxid zu formen.

  • Wird Cristobalit dagegen einem hohen Druck ausgesetzt, der von der Gleichmäßigkeit eines hydrostatischen Drucks nur geringfügig abweicht, nimmt das Mineral eine neue Kristallstruktur an. Diese Struktur, Cristobalit X-I, war zuvor noch bei keinem Silikat beobachtet worden. Sobald der ‚quasi-hydrostatische‘ Druck absinkt, fällt Cristobalit in seine ursprüngliche Struktur zurück.

Des Rätsels Lösung

Mit diesen Erkenntnissen lässt sich das Rätsel der Meteorite leicht auflösen: Der darin enthaltene Seifertit muss kein Produkt extremer Einschläge sein, die für Mond und Mars dramatische Folgen gehabt hätten. Er kann sich auch, bei weniger heftigen Einschlägen, unter geringeren – wenngleich immer noch hohen – nicht-hydrostatischen Drücken aus Cristobalit gebildet haben. „Der an Seifertit angrenzende Cristobalit lässt sich gut als ein unter sinkendem Druck entstandenes Rückfallprodukt aus Cristobalit X-I erklären. Cristobalit X-I hat sich nur vorübergehend unter quasi-hydrostatischem Druck gebildet“, erklärt Dr. Ana Černok vom Bayerischen Geoinstitut (BGI) an der Universität Bayreuth, die zurzeit als Marie Curie Fellow an der Open University in Großbritannien arbeitet. „Die Annahme, dass sowohl nicht-hydrostatische als auch quasi-hydrostatische Drücke auf engstem Raum entstehen, wenn Mond, Mars oder andere Planeten schockartig von Einschlägen getroffen werden, stimmt mit den bisherigen Ergebnissen der Meteoritenforschung gut überein“, ergänzt Prof. Dubrovinsky.

Der Bayreuther Wissenschaftler betont, dass die neuen Erkenntnisse grundsätzliche Bedeutung für die Meteoritenforschung haben: „Mineralien wie Cristobalit und Seifertit erlauben, für sich genommen, keine eindeutigen Rückschlüsse auf die Entstehung der Meteoriten. Unsere Messungen zeigen, dass gleiche Kristalle sehr unterschiedliche Entstehungsgeschichten haben können. Zudem ist deutlich geworden, dass es neben der Höhe von Drücken und Temperaturen einen weiteren wichtigen Faktor gibt, der verstärkt in die Analysen von Meteoriten einbezogen werden sollte: die zum Teil äußerst hohen mechanischen Spannungen, die als Folge unterschiedlicher Druckzonen an der Gesteinsbildung beteiligt sind.“

Mineralogische Forschung in internationaler Zusammenarbeit

Cristobalit ist nach dem Vulkan San Cristobal in Mexiko benannt, wo das 1884 erstmals beschriebene Gestein gefunden wurde. Modernste Forschungstechnologien haben es jetzt ermöglicht, die ungewöhnliche Struktur Cristobalit X-I zu entdecken und zu beschreiben. Neben dem Bayerischen Geoinstitut sowie den Elektronen-Synchrotronanlagen in Hamburg und Grenoble waren auch die Universität Wien und das Nationale Forschungszentrum in Lyon (CNRS, ENS) beteiligt. „In Lyon konnten wir mit Simulationen an Hochleistungsrechnern wichtige Informationen über die dynamische Stabilität von Cristobalit X-I unter hohem Druck gewinnen“, sagt Dr. Razvan Caracas in Lyon, früherer Mitarbeiter am Bayerischen Geoinstitut. „Unsere Untersuchungen an der Anlage für Transmissionselektronenmikroskopie in Bayreuth haben gezeigt, dass Cristobalit X-I bei nachlassendem Druck wieder in die ursprüngliche Struktur von Cristobalit zurückfällt – was ebenfalls ein entscheidender Beitrag zur Auflösung des Meteoriten-Rätsels war“, ergänzt Dr. Katharina Marquardt vom BGI.

Namenspatron des Seifertit ist der Bayreuther Mineraloge Prof. Dr. Dr. h.c. Friedrich Seifert, Gründer und langjähriger Direktor des Bayerischen Geoinstituts. Prof. Dr. Ahmed El Goresy am Max-Planck-Institut für Chemie in Mainz hatte das Mineral zuerst in Marsmeteoriten entdeckt. Auf seinen Vorschlag hin entschied sich die Internationale Mineralogische Gesellschaft (IMA) im Jahr 2004 für den Namen „Seifertit“.

Veröffentlichungen:

Ana Černok, Katharina Marquardt, Razvan Caracas, Elena Bykova, Gerlinde Habler, Hanns-Peter Liermann, Michael Hanfland, Mohamed Mezouar, Ema Bobocioiu, and Leonid Dubrovinsky, Compressional pathways of α-cristobalite, structure of cristobalite X-I, and towards the understanding of seifertite formation.
Nature Communications, 2017; DOI: 10.1038/ncomms15647.

Die Erstautorin Dr. Ana Černok wurde 2016 an der Universität Bayreuth mit einer Arbeit über Cristobalit und Coesit promoviert. Während der Arbeit an ihrer Dissertation – online zugänglich unter https://eref.uni-bayreuth.de/29913/ – wurde sie von der University of Bayreuth Graduate School unterstützt.
 

 

 

Impressum  |  Satzung  |  Beitri
 

Impressum  |  Satzung  |  Beitritt   © 2009 - 2017 Freunde des Rieskratermuseums e.V.

Neue Seite 1